obrazky/ee_logo_fb.pngobrazky/fialovy_plamen_fb.png
Slnko je dnes v znamen Blíženci (ivel:Vzduch)
tenk revo./obrazky/YingYang.giftenk revo
Dorastajca Luna je dnes v znamen Panna (ivel:Zem)
Dorastajca Luna je dnes v znamen Panna (ivel:Zem)
Merk�r (Rozum)Venu�a (City)Mars (Sila)Jupiter (Pl�ny)Saturn (Obmedzenia)Ur�n (N�pady)Nept�n (Sny)Pluto (Zmeny)
Rak (starostlivos�, ochota pom�c�)Bl�enci (zvedavos� a rados� z odovzd�vania)Ryby (intu�cia, empatia, fant�zia)Kozoroh (zodpovednos�, d�slednos�)Vodn�r (originalita, hlad po poznan�)B�k (rutina a d�vera v osved�en�)Ryby (intu�cia, empatia, fant�zia)Kozoroh (zodpovednos�, d�slednos�)
Tip: Nastav kurzor myši a počkajSpoznaj Sám Seba
 
 
 
 
http://toplist.sk/count.asp?id=1136761&logo=mc
./large/obrazky/hand_prev.gifpredchádzajúci článok      nasledujúci článok./large/obrazky/hand_next.gif
Začal sa najväčší svetový experiment

Článok je zaradený do kategórií:
ČlánokKľúčové slováKomentáre
A-   A+


Najväčší svetový časticový akcelerátor sa pokúsi zistiť ako bol vytvorený vesmír. Viac ako 700 ruských vedcov spolu s 9000 ďalšími sa zúčastňuje na projekte, ktorý má za cieľ napodobniť big bang.

Obrovský zrážač Hadron vystrelí lúč protónov do zhruba 27 km dlhého tunela vo dvoch protikladných smeroch. Pri približne rýchlosti svetla sa zrazia, čo vyvoláva obavy z otvorenia vysoko-gravitačnej zóny (čosi ako čiernej diery), ktorá by mohla ohroziť život na Zemi.

Vedci dúfajú, že sa im podarí nájsť predtým nezistené druhy častíc, čím sa potvrdia alebo vyvrátia desiatky teórií. Zrážač (Collider) postavili pri švajčiarskej Ženeve hlboko pod zemou.



Large Hadron Collider


Large Hadron Collider (LHC) je urychlovač částic, který se nachází mezi pohořím Jura ve Francii a Ženevským jezerem ve Švýcarsku. V současné době je ve stádiu výstavby a pracovat by měl začít 10. září 2008.[1]. LHC by se měl stát největším světovým urychlovačem. Na výrobě a financování LHC se podílí přes 2000 vědců ze 34 zemí.
LHC je instalován v kruhovém tunelu o obvodu 27 km ve hloubce 50 – 150 m pod zemí. Tunel byl postaven roku 1980 pro předchozí velký urychlovač Large Electon-Positron (LEP). Zajímavostí je, že tunel není umístěn vodorovně, ale má mírný sklon, protože tehdejší technologie nebyly schopny zajistit vyhloubení skrz některé horniny. Tunel přechází mezi hranicemi Francie a Švýcarska ve čtyřech místech, nicméně jeho většina leží ve Francii. Přestože je tunel pod zemí, na povrchu se nachází některé budovy umožňující jeho existenci (např. kompresory, ventilace, chladicí zařízení a ovládací stanice).
Výsledky měření z urychlovače Large Hadron Collider (LHC) jsou nesmírně důležité pro jaderné fyziky, otvírají nové možnosti v oblasti výzkumu a odhalují neznámé stránky vesmíru. Přístroj urychluje dva paprsky částic proti sobě rychlostí větší než 99,9 % c. Vzájemné srážky svazků vytváří spršky nových částic, které jsou poté předmětem studia vědců.

Jak funguje


LHC bude produkovat čelní srážky mezi dvěma svazky částic stejného druhu, buď protony nebo mezi různými typy iontů, především iontů olova. Svazky budou vytvářeny v již existujícím řetězci urychlovačů a budou vstřikovány do LHC, kde budou cestovat skrz vakuum přirovnatelné k vakuu ve vesmíru. Supravodivé magnety pracující při extrémně nízkých teplotách budou usměrňovat svazky v trubici urychlovače. Každý vyslaný paprsek bude obsahovat okolo 3000 svazků částic a v každém z nich bude obsaženo přibližně 100 miliard částic. Částice jsou tak drobounké, že pravděpodobnost vzájemné srážky je velmi malá - vychází na něco okolo 20 srážek na každých 200 miliard částic. Nicméně i přes to se budou částice svazku srážet 30 milionkrát za sekundu a LHC bude vytvářet 600 milionů srážek za sekundu. Při rychlosti blížící se rychlosti světla udělá proton v LHC 11 245 oběhů za sekundu. Svazek bude mít možnost obíhat dokola až 10 hodin a urazit dráhu větší než 10 miliard kilometrů – pro srovnání je to větší vzdálenost než cesta na planetu Neptun a zase zpět.

Popis zařízení


Po dosažení energie 0,45 TeV se ze soustavy urychlovačů vstříknou částice do LHC kde udělají miliony oběhů. Při každém oběhu částice dostanou další impuls od elektrického pole umístěného ve speciálních dutinách, dokud jim nebude udělena konečná energie 7 TeV. Pro kontrolu svazku o tak obrovské energii bude v LHC použita soustava 1800 supravodivých magnetů. Tyto elektromagnety jsou stavěny ze supravodivých materiálů. Při nízkých teplotách mohou vést elektrický proud s nulovým odporem, proto mohou vytvořit mnohem silnější magnetické pole. Tyto vodiče jsou vyrobeny z nobiotitanové slitiny a pracují při teplotě pouhých 1,9 K (-271°C). Kdyby LHC používalo běžné „teplé“ magnety namísto supravodivých, prstenec by musel mít obvod 120 km a pro dosažení stejných výsledků by spotřeboval 40x více energie. Jednotkou intenzity magnetického pole je tesla. LHC bude pracovat okolo 8 tesla, přičemž běžné „teplé“ magnety jsou schopné vytvořit magnetické pole okolo 2 tesla. CERN v současné době pracuje na vývoji technologie počítačových sítí zvané GRID. To má spojovat desítky a později stovky PC pro vytvoření prostředku pro zpracování dat zaznamenaných na detektorech LHC. Experimenty LHC budou produkovat enormní množství dat. Každý rok to bude dostatek informací na naplnění kapacity takového počtu CD, že by se z nich dal postavit 20 km vysoký sloup (cca 15 Petabajtů = 15 milionů GB).

Experimenty a jejich detektory


Úkolem částicového detektoru je zaznamenávat a vizualizovat exploze částic, které jsou důsledkem srážky. Informace o rychlosti, hmotnosti a elektrickém náboji částice pomohou fyzikům zjistit identitu dané částice. Úkol to ale nebude snadný. Předpokládáme, že LHC pomůže objevit nové částice. Ty však nebudou volně poletovat a čekat, až si jich někdo všimne. Všechny důkazy o existenci částice budou nepřímé. Některé mohou existovat pouze nepatrné zlomečky sekundy a proto bude potřeba a uvidíme pouze produkty jejich rozpadu. Moderní přístroje částicové fyziky se skládají z vrstev sub-detektorů, každý se specializuje na určitý typ částice. 3 hlavní typy sub-detektorů:
  • Sledovací zařízení – odhaluje trajektorii elektricky nabité částice podle stopy, kterou za sebou nechají (pokud jsou ve vhodné směsi).
  • Kalorimetr – měří ztrátu energie při průchodu. Obvykle je navržen tak, aby zastavil a absorboval většinu částic přicházejících z kolize. Kalorimetry jsou konstruovány z vrstev hustých materiálů (olovo) a prokládány aktivními médii (tekutý argon). Kalorimetry zastaví většinu známých částic kromě mionů a neutrin (ty mohou pouze vychýlit např. radioaktivní látky)
  • Částicový identifikační detektor – identifikuje částici podle záření vysílaného nabitou částicí.

ALICE
Pro experiment ALICE bude LHC srážet olověné ionty aby se tak vytvořily podmínky shodné s těmi po Velkém třesku. Získaná data umožní fyzikům studovat stav hmoty zvaný kvark-gluonová plazma, která nejspíše při velkém třesku existovala. Protony a neutrony jsou tvořeny kvarky (proton: 2 kvarky up, 1 kvark down, neutron: 1 kvark up, 2 kvarky down), které drží pohromadě díky jiným částicím zvaným gluony (od anglického slova glue – lepidlo). Gluony působí na kvarky tak velkou silou, že samostatný kvark ještě nebyl nalezen. Kolize v LHC způsobí teploty vyšší než 100 tisíci násobek teploty v jádru Slunce. Fyzikové doufají, že při těchto podmínkách se protony a neutrony roztaví a uvolní tak kvarky ze svazky s gluony. Tím vznikne kvark-gluonová plazma. Experiment ALICE bude studovat kvark-gluonovou plazmu, její vznik a zpětné přetvoření na známou hmotu.
ATLAS
ATLAS je jedním ze dvou víceúčelových detektorů v LHC. Bude zkoumat fyziku ve větším rozsahu, než například ALICE, včetně pátrání po Higgsově bosonu, extra dimenzích a částicích, které by mohly vytvořit temnou hmotu. ATLAS, podobně jako CMS, bude zaznamenávat trajektorie, energie a identitu částic, vznikajících při kolizích, avšak tyto dva experimenty vyvinuly radikálně odlišná technická řešení pro systém magnetů ve svých detektorech. Systém magnetů je pro ATLAS typický. Tvoří ho 8 obřích magnetů, poskládaných na délku do kruhu tak, aby magnetické pole bylo nejsilnější uprostřed detektoru. Každý z těchto magnetů měří 25 metrů a je složen ze supravodivých cívek.
CMS
Podobně jako ATLAS i CMS bude zkoumat větší úsek částicové fyziky, včetně Higgsova bosonu, extra dimenzí a částic tvořících temnou hmotu. Je patrné, že CMS zkoumá stejné problémy jako ATLAS, rozdíl je ale ve způsobu. Narozdíl od ATLASu použije CMS pouze jednoho obřího elektromagnetu cylindrického tvaru (solenoidu). Solenoid obalující vlastní detektor je složen z cylindrické cívky supravodivých kabelů. Tento gigantický magnet je schopen vytvořit magnetické pole o síle 4 tesla (zhruba 100 tisíckrát větší, než magnetické pole Země). Toto pole musí být poutáno ocelovými výztuhami, které tvoří značnou část celkové hmotnosti detektoru (12 500 tun). Zajímavostí detektoru je, že jako jediný byl nejdříve postaven na povrchu a teprve pak spuštěn do podzemí.
LHCb
LHCb se specializuje na prozkoumání nepatrných rozdílů mezi hmotou a antihmotou studováním částice zvané kvark b (b znamená beauty – krása). Detektor by měl zodpovědět proč se zdá, že vesmír je složen téměř výhradně z hmoty, ale ne z antihmoty. Namísto obklopení místa kolize detektorem používá LHCb řadu sub-detektorů ke zjištění částic. Vertex Locator (VELO) je prvním detektorem umístěným okolo místa srážky, kde bude měřit trajektorie částic v místě interakce. Po detektoru VELO následuje RICH-1. Bude identifikovat trajektorie částic malých hybností. Hlavní sledovací zařízení je uloženo před i za magnetem a bude opět zaznamenávat trasy částic a měřit jejich hybnosti. Na okraji je sledovací zařízení RICH-2 pro sledování částic s vysokou hybností. LHC vytvoří velké množství kvarků různých typů, předtím, než se rozpadnou na jiné formy. K zachycení kvarků b vyvinuli vědci pro LHCb sofistikovaná pohyblivá sledovací zařízení blízko drahám paprsků kroužících v LHC.
TOTEM
Experiment TOTEM se zaměří na zkoumání jevů, které se nevešly do škály úkolů víceúčelových detektorů ATLAS a CMS. Bude měřit velikosti částic a přesně monitorovat luminozitu LHC. K tomu musí být TOTEM schopen detekovat částice produkované velmi blízko paprsků obíhajících v LHC. To vyžaduje detektory ve speciálně navržených vakuových komorách zvaných Římské hrnce (Roman pots), připojených k trubkám s paprsky. 8 těchto zařízení bude v párech umístěno v blízkosti kolizí v detektoru CMS na čtyřech místech. CMS a TOTEM jsou dva experimenty na sobě nezávislé avšak TOTEM bude sloužit jako sběrač dat ze všech experimentů.
LHCf
LHCf má za úkol simulovat kosmické záření v laboratorních podmínkách za pomoci částic vytvořených uvnitř LHC. Je nejmenším experimentem, co do počtu vědců (22). Kosmické záření je způsobeno nabitými částicemi z vesmíru, které neustále bombardují zemskou atmosféru. Narážejí do jader ve vyšší atmosféře a způsobují kaskádu částic, které dosáhnou zemského povrchu. Získání znalostí o chování kosmického záření, resp. těchto kaskád částic pomůže vědcům vypracovat velké experimenty, které pokryjí tisíce kilometrů

Účel


Očekávaný start projektu v roce 2007 zajistí srážky o největší energii, jaká kdy byla dosažena v laboratorních podmínkách, a už dnes se fyzici nemohou dočkat, co se jim podaří odhalit. Čtyři obrovské detektory – ALICE, ATLAS, CMS a LHCb – budou zkoumat srážky a tímto způsobem budou možná fyzici schopni prozkoumat nové teorie hmoty, energie, vesmíru a času. Výsledky z LHC mohou vrhnout nové světlo na:
  • Temnou energii
  • Temnou hmotu a částice které ji tvoří
  • Antihmotu
  • Higgsův boson
  • Kvarky a leptony - jsou skutečně fundamentální částice?

Výkonnost


LHC je přístroj pro koncentraci energie ve velmi malém prostoru. Částice budou mít energii řádově TeV. 1 TeV je energie srovnatelná s energií letícího komára, háček je v tom, že proton je asi trilionkrát menší než komár. Každý proton rotující v LHC bude mít energii 7 TeV, takže když se srazí dva protony, energie srážky bude 14 TeV. Ionty olova mají 82 protonů a dohromady dávají ekvivalentně vysokou energii: kolize dvou svazků iontů olova bude mít energii srážky okolo 1150 TeV. Při plném výkonu bude mít každý svazek energii 350 MJ, což je energie jakou má vlak o váze 400 tun jedoucí rychlostí 200 km/h. Tato energie je dostatečná k roztavení 500 kg mědi. Energie uložená v magnetech je ještě přibližně třicetkrát vyšší (11 GJ).

Cena


LHC původně v roce 1995 dostal rozpočet 2.6 miliard švýcarských franků a k tomu ještě 210 milionů švýcarských franků na experimenty. Nakonec však cena ještě více vzrostla a konečná cena je tedy 8 miliard amerických dolarů.

Bezpečnostní problémy


Vědci i lidé, kteří nejsou součástí komunity kolem LHC, vyjádřili znepokojení, že LHC může způsobit jednu z několika teoretických katastrof, které by mohly zničit Zemi nebo dokonce celý vesmír:
  • Vytvoření stabilní černé díry
  • Vytvoření zvláštní hmoty, která by byla stabilnější než normální hmota
  • CERN vytvořil studii, která by vyšetřila, jestli se takové nebezpečné události jako vytvoření stabilní mikroskopické černé díry mohou stát.

Studie došla k závěru: "Nenašli jsme žádný podklad pro jakoukoli možnou hrozbu." Například, není možné vytvořit mikroskopické černé díry, pokud by určité neotestované teorie byly správné. I kdyby však vznikly, ihned by se vytratily a byly by tak neškodné. Jeden z nejsilnějších argumentů, že LHC je bezpečný, je fakt, že kosmické paprsky o mnohem větší energii, než může LHC kdy vyprodukovat, bombardovaly Zemi a všechna tělesa ve sluneční soustavě miliardy let bez takovýchto účinků. Stejně ale u každého nového experimentu nikdy není možné s jistotou říct, co se stane. John Nelson z Birmingham University řekl, že "je velmi, velmi nepravděpodobné, že existuje nějaké riziko - ale nemohu to dokázat."

RHIC, podobný, jen mnohem menší urychlovač, funguje již od roku 2000 a nezpůsobil zatím žádné Zemi-ničící efekty.

zdroj: http://cs.wikipedia.org/wiki/Large_Hadron_Collider

Informácie obsiahnuté v článku nemusia vždy zodpovedať názorom a presvedčeniam autora stránky.



Pridané : 2008-09-10 09:59:04
Zdroj : http://prop.sk/september08.html#zac
Sídlo : http://prop.sk

Verzia pre tlač   Bookmark and Share   pošli na vybrali.sme.sk